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Pions in hot dense matter and their astrophysical implications
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We study the role of pions in hot dense matter encountered in astrophysics. We find that strong interactions
enhance the number density of negatively charged pions and that this enhancement can be calculated reliably for
a relevant range of density and temperature by using the virial expansion. We assess the influence of pions and
muons on the equation of state (EOS) and weak-interaction rates in hot dense matter. We find that thermal pions
increase the proton fraction and soften the EOS. We also find that charged current weak reactions involving
pions and muons νμ + μ− → π and νμ + π− → μ− make an important contribution to the opacity of muon
neutrinos. This could influence the dynamics of core-collapse supernovae and neutron-star mergers. Finally, we
note that pion-nucleon reactions can alter the evolution of the proton fraction when weak interactions are not in
equilibrium.
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I. INTRODUCTION

Hot dense matter encountered inside neutron stars plays
an essential role in the dynamics of extreme astrophysical
phenomena such as core-collapse supernovae and neutron-star
mergers. Properties of nuclear matter, especially the equation
of state (EOS), at the high density (1011–1015 g/cm3) and
temperature (T = 5–50 MeV) realized in these astrophysical
sites have been studied in some detail (for a recent review,
see Ref. [1]). However, the role of pions in core-collapse
supernovae and neutron-star mergers is not well understood.
Motivated by recent work in Ref. [2] which showed the
inclusion of muons could facilitate supernova explosions
through the neutrino-driven mechanism, we study the role
of negatively charged thermal pions and muons in the hot
neutron-rich matter and discuss their implications.

The neutron-rich dense stellar matter, which is electrically
neutral and typically in beta equilibrium, contains a high
density of electrons. The electron chemical potential μe in-
creases with density and acts as a source for other negatively
charged particles. At low temperature, muons appear when
μe > mμ where mμ = 105.7 MeV is the muon mass. In the
absence of interactions between pions and nucleons, a Bose-
Einstein condensate of negatively charged pions would appear
when μe > mπ− where mπ− = 139.6 MeV is the mass of the
charged pion. Since the electromagnetic interactions of muons
in the dense matter are negligible, interactions do not alter
the threshold density for their appearance. In contrast, pions
interact strongly with nucleons. Their dispersion relation in
a dense medium is poorly understood because it is sensitive
to nuclear many-body effects that are difficult to calculate
reliably at high density. In the early 1970s, Migdal and Sawyer
independently proposed that pions could condense in dense
matter due to attractive p-wave interactions with nucleons
[3,4]. Several other studies have explored in some detail the
possibility of pion condensation in the dense neutron-rich

matter (see, for example, Refs. [5–9]). Despite these studies,
the type of condensation and the critical density for its appear-
ance remain uncertain. In this article, we restrict our attention
to high temperatures and low density where we expect a
population of thermal pions. Under these conditions, the virial
expansion provides a reliable approach to include interactions
between pions and nucleons. We find that these interac-
tions enhance the thermal population of pions and influence
the composition of matter, the EOS, and weak-interaction
rates.

We begin in Sec. II by discussing a simple model that de-
scribes hot dense nuclear matter containing pions and muons.
Here, the virial expansion is used to include the effects of
pion-nucleon interactions, and nucleon-nucleon interactions
are accounted for by a phenomenological mean-field model.
In Sec. III, we discuss the effect of pions and muons on
the EOS, the neutrino opacity, and on the processes relevant
to understanding bulk viscosity of dense matter. Finally, in
Sec. IV, we conclude and identify future work needed to
properly include pions in the description of core-collapse
supernovae and neutron-star mergers.

II. PIONS IN HOT NEUTRON-RICH MATTER

At the temperatures of interest, in the range 10–50 MeV,
the matter is composed of nucleons, leptons and pions. To
include the effects of interactions between pions and nucleons,
we calculate the second-virial coefficient for the pion-nucleon
system directly in terms of the measured pion-nucleon phase
shifts. This approach was used to describe the hot hadronic
gas encountered in heavy-ion collisions in Refs. [10–12], and
to describe a dilute gas of nucleons encountered in outer
regions of the newly born neutron star in Ref. [13]. The
virial expansion provides a systematic approach to calculate
the thermodynamic properties of interacting multicomponent
gases when the particle fugacities are small. The fugacity of
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a particle species i is given by zi = expβ(μi − mi ) where μi

is the chemical potential which includes mass, mi is the rest
mass of the particle, β = 1/T is the inverse temperature. To
justify the use of the virial expansion, we restrict our analysis
to densities that are low enough and temperatures that are
high enough to ensure that the fugacity zπ− < 1 and that
Bose-Einstein condensation of pions does not occur.

At the modest densities that we consider, ρ � 3 ×
1014 g/cm3, it is adequate, as a first step, to account for in-

teractions between nucleons by using a simple nonrelativistic
Skyrme model [14]. The parameters of the model we employ,
called non-relativistic Akmal, Pandharipande, and Ravenhall
(NRAPR), are obtained by fitting to the empirical properties
of nuclear matter at nuclear saturation density n0 = 0.16 fm−3

[15,16], and to the properties of neutron matter predicted by
ab initio many-body theory which employ realistic nuclear
interactions [17,18]. The nucleon contribution to the energy
density is given by

EN (nn, np,T ) = τn
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where t0, t1, t2, t3, x0, x1, x2, x3, and ε are the Skyrme param-
eters taken from Ref. [15]. The neutron and proton densities
are denoted nn and np, respectively, and nB = nn + np is the
total baryon density. The variables τn and τp are defined such
that the first two terms in Eq. (1) correspond to the neutron
and proton kinetic-energy densities, respectively.

The dense matter we consider is homogeneous, electrically
neutral, and close to beta equilibrium. Under these conditions,
the chemical potential for negative charge, μ̂ = μn − μp,
acts as a source for negatively charged particles. In beta
equilibrium the electron, muon, and pion chemical potentials
are equal,μe = μ−

μ = μπ− = μ̂, and electric charge neutrality
requires that np = ne + nμ + nπ− . When μ̂ = μn − μp � T it
is reasonable to neglect the presence of π0 and π+ particles
in the ground state since their density is suppressed by the
factor exp (−μ̂/T ) and exp (−2μ̂/T ), respectively, relative to
the abundance of π−.

The second virial coefficient for the π−-neutron system is
given by

bnπ
−

2 = eβM

2π3

∫ ∞

M
dEE2K1(βE )

∑
l,ν

(2l + 1)δ3/2l,ν , (2)

where K1 is the modified Bessel function of the second kind,
M = mN + mπ is the invariant mass of the interacting pair at
the threshold. This result was obtained by using the relativistic
formalism in Refs. [10,11] and is appropriate for our study
because pions can be relativistic because their typical pion
momentum pπ � √

3mπT is comparable to mπ . Note that
the phase shifts δ depend on E which is the center-of-mass
energy. The sum is over the angular momentum l of the
scattering state, and the nucleon spin-projections ν = +,−.
Since nπ− scattering only involves the isospin I = 3/2 state,
only the pion-nucleon phase shift in the isospin I = 3/2
channel denoted by δ

3/2
l,ν contributes to bnπ

−
2 . We note that this

definition differs from Refs. [10,11] in that it contains an extra
factor of eβM . We find it convenient to include this factor and
redefine the thermodynamic functions that appear later in the
text.

Proton-π− scattering involves two reaction channels:
π−p → π−p and π−p → π0n, which implies that these re-
actions do not have definite isospin. However, since b2 is
independent of the basis in which we consider the S matrix
[19], bpπ

−
2 depends on the sum of the phase shifts from the

two mixed isospin channels:

bpπ
−

2 = eβM

2π3

∫ ∞

M
dEE2K1(βE )

∑
l,ν

(2l + 1)
(
δ
3/2
l,ν + δ

1/2
l,ν

)
. (3)

In this study we only include l = 0, 1, i.e., the s- and
p-wave contributions. At the energies of interest we find them
to be the dominant contributions. In Fig. 1 we show the s- and
p-wave phase shifts taken from the analysis of experimental
data in Ref. [20]. The phase shifts are plotted as a function
of E − M where E = (p2 + m2

π )
1/2 + (p2 + m2

N )
1/2 is the

center-of-mass energy and p is the magnitude of the pion and
nucleon momenta in the center-of-mass frame. The large and

FIG. 1. Pion-nucleon phase shifts from the analysis presented in
Ref. [20].
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TABLE I. The second-virial coefficients for the Nπ− system.

T (MeV) 15 30 45

bnπ
−

2 (fm−3) 2.14 × 10−4 4.09 × 10−3 1.87 × 10−2

bpπ
−

2 (fm−3) 4.24 × 10−4 4.68 × 10−3 2.02 × 10−2

attractive p-wave phase shift δ3/2+1 due to the	 resonance is the
dominant channel. The second virial coefficients calculated
by using Eqs. (2) and (3) at a few temperatures of interest are
shown in Table I.

The virial expansion for nucleons fails at the higher density
of interest here, and for this reason we use a simple mean-field
model to include the effects of nucleon-nucleon interactions.
While it is desirable to treat the nucleon-nucleon and nucleon-
pion interactions consistently, and chiral perturbation theory
provides, in principle, a framework to do this, there remain
technical challenges [21]. Furthermore, the convergence of
the chiral expansion for pion-nucleon interactions is poor and
requires a large number of operators to capture the resonant
nature of this interaction [22]. To circumvent these issues,
as a first step in the study of the role of pions in hot dense
matter, we advocate our hybrid approach. In the limit when
zπ− � 1 and zn, zp � 1 our approach is reliable. At higher
density where zπ− < 1/2 and zn < 1 or zp < 1 we expect
our results to capture the qualitative aspects, but corrections
due to neglected terms proportional to zπ z2n and zπ z2p become
important. These need to be assessed before one can draw
quantitative conclusions. In this study, we also neglect pion-
pion interactions because the pion-nucleon interaction, and
the nucleon density, are both significantly larger.

The composition of matter at fixed temperature and baryon
density is determined by requiring matter to be charge-neutral
and in beta equilibrium. The chemical potentials μn, μp, and
μe = μμ− = μπ− = μ̂ = μn − μp are determined to ensure
that nB = nn + np and ne− + nμ− + nπ− = np. The effect of
interactions is negligible for the leptons and their number
densities are obtained by using the ideal Fermi gas result.

For nucleons and pions, interactions are important. The
nucleon number densities are given by

ni =
∫

dk

π2
k2(1 + exp {β[εi(k) − μi]})−1, (4)

where the single nucleon energy

εi(k) = mi + k2

2m∗
i

+Ui(nn, np,T ), (5)

is obtained in mean-field theory and m∗
i is the nucleon ef-

fective mass, and Ui(nn, np,T ) = ∂EN (nn, np,T )/∂ni is the
mean-field potential energy [14]. The effective mass is found
by solving for the momentum-dependent part of the functional
derivative of EN (nn, np,T ) with respect to the nucleon distri-
bution function. The momentum-independent part is equal to
Ui(nn, np,T ).

The number density of pions is obtained in the virial
expansion and is given by

nπ− =
∫

dk

2π2
k2 exp

[ − β
(√

k2 + m2
π − μ̂

)] + nintπ− , (6)

where

nintπ− =
∑
N=n,p

zNzπ−bNπ−
2 , (7)

is the contribution due to pion-nucleon interactions. Note that
the reason we have used the Boltzmann distribution here
for pions rather than the Bose-Einstein distribution is for
consistency with the virial expansion. The difference this
makes, however, is minimal with only a change of about
4% to 5% in the pion number density at nuclear density
and T = 30 MeV. Equation (4) only includes effects due to
nucleon-nucleon interactions. The contributions due to pion-
nucleon interactions, given by the virial expansion, are δnn =
znzπ−bnπ

−
2 , and δnp = zpzπ−bpπ

−
2 , respectively. In our hybrid

model, these contributions are added to Eq. (4) to obtain the
total neutron and proton densities.

For a given value of the baryon density nB and temperature
T , we guess a value for proton number density np and use
this to define the single-particle nucleon energies defined in
Eq. (5). Then, we use Eq. (4) to obtain the nucleon chemical
potentials μn and μp. The beta-equilibrium condition allows
us to obtain the charge chemical potential μe and we use it to
obtain the number densities ne, nμ, and nπ . The lepton number
densities are obtained using the ideal Fermi-Dirac distribution
and the pion number density is obtained by using Eq. (6). The
charge neutrality condition np = ne + nμ + nπ allows us to
update the guess np and find the true value. The above method
is augmented slightly to include the change in the nucleon
number densities due to the interactions between nucleons and
pions. In this case we define two new variables:

ηn = μn − mn −Un

T
, ηp = μp − mp −Up

T
, (8)

which we solve for in addition to np. These three variables
are determined as a solution the system of three equations,
given by nn = ñn + δnn, np = ñp + δnp, and np = ne + nμ +
nπ , where ñn and ñp are given by Eq. (4).

The densities of charged particles with and without the
inclusion of pions are shown in Fig. 2. From the figure it is
evident that pions enhance the proton fraction and suppress
the lepton fraction in the hot dense matter as they furnish
additional negative charge. This effect is strong enough that,
at higher densities the proton fraction begins increasing with
density due to the large number of pions. Although mπ > mμ,
strong attractive p-wave interactions with nucleons enhance
their number density, at nB = n0 and T = 30 MeV, nπ− ≈
nμ− . A naive extrapolation suggests nπ− increases rapidly with
density, and nB = 1.4n0 and T = 30 MeV, nπ− ≈ 2nμ− .

The fugacities of pions and nucleons at baryon density
nB = n0/2 and nB = n0 as a function of the temperature are
shown in Fig. 3. It is interesting to note that zπ− and zp
remain small over a wide range of temperatures. As expected
in neutron-rich matter, the fugacity of neutrons is large, and
the virial expansion for pion-neutron interactions is reliable
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FIG. 2. Number fraction of charged particles at T = 30 MeV in
β equilibrium. Solid curves include pions and dashed curves only
contain nucleons and leptons.

only at high temperature. In what follows we consider matter
at nB < 1.5n0 and T > 25 MeV and calculate the equation of
state and weak-interaction rates by using the hybrid model in
which pion-nucleon interactions are accounted for through the
second virial coefficient and nuclear interactions are treated in
mean-field theory.

III. ASTROPHYSICAL IMPLICATIONS

A. Equation of state

At a given baryon density and temperature, pions alter the
EOS in two ways: First, they make a small contribution to

FIG. 3. Pion and nucleon fugacities in charge-neutral dense mat-
ter in β equilibrium at nB = n0 (solid curves) and nB = n0/2 (dashed
curves) are shown as function of temperature.

FIG. 4. The equation of state of hot dense matter with and
without the inclusion of negative pions. The density axis corresponds
to matter containing negative pions.

the pressure and energy density. The pion contribution to the
pressure and the energy density, obtained in the relativistic
virial expansion to leading order in the pion and nucleon
fugacities, zπ− and zN , are given by

Pπ− = T zπ−

∫
dkk2

2π2
exp [−βεπ (k)] + T zπ−

∑
N=n,p

zNb
Nπ−
2 ,

(9)

and

επ− = zπ−

∫
dkk2

2π2
επ (k) exp [−βεπ (k)]

+ zπ−
∑
N=n,p

zN
∂bNπ−

2

∂β
, (10)

respectively, where επ (k) = (k2 + m2
π )

1/2 is the free pion
dispersion relation [10]. In Eqs. (9) and (10), the second
line contains the contribution due to interactions between
nucleons and pions. Second, by furnishing negative charge,
pions increase the proton fraction and decrease the lepton
fraction. This has an important effect on the EOS, because
any reduction in the asymmetry between neutron and protons
lowers the pressure at fixed density. The individual contribu-
tions to the pressure at T = 30 MeV are shown as a function
of the energy density in Fig. 4. Here, the energy density and
pressure of nucleons are calculated in mean-field theory by
using Eq. (1), and the leptons are treated as an ideal Fermi
gas. From the figure we can infer that the dominant effect of
pions is to alter the nucleon contribution. The symmetric state,
with a higher proton fraction, is softer and has lower pressure
at a given energy density.
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FIG. 5. The equation of state of hot dense matter with and
without the inclusion of negative pions.

Figure 5 shows the temperature dependence of the pressure
at fixed baryon density. Motivated by recent simulations that
suggest high temperatures, T � 20–50 MeV, are realized in
neutron-star mergers even at baryon density nB � n0 [23], we
chose a rather large range of T to assess the temperatures at
which pions would have the most dramatic effects on the EOS.
From the figure, we see that pions play a role and soften the
EOS when T � 40 MeV. We find that at nB = 1.2n0 pions
decrease the total pressure by about 9% at T = 60 MeV. Our
study suggests that these effects can be significantly larger at
higher density. However, methods beyond the virial expansion
are needed to ascertain their importance.

B. Neutrino mean-free paths

The mean-free path of neutrinos and antineutrinos in hot
dense matter influences aspects of supernovae dynamics [24],
the observable signatures of neutrinos from proto-neutron
stars [25–27], and is expected to play a role in neutron-star
mergers [23,28]. At the densities and temperature encountered
in these environments, all three flavors of neutrinos are pro-
duced and contribute to the transport of energy, momentum,
and lepton number. In matter containing nucleons and lep-
tons, νe and ν̄e interact most strongly as they encounter both
charged current and neutral current interactions with nucleons
and leptons. The μ and τ neutrinos are coupled to matter
only through their neutral-current interactions because their
energies are not adequate to create the heavy charged leptons
in the final state. Here, for the first time, we show that the
presence of pions allows for new charged current reactions
for muon neutrinos. We find below that these reactions signif-
icantly reduce the νμ and νμ mean-free paths.

We find that the most important reactions are νμ +
π− → μ− and νμ + μ− → π−. The low-energy effective

Lagrangian that describes these weak processes is

L = −GF cos θC√
2

fπ∂απ−ψ̄νμ
[γα (1 − γ5)]ψμ, (11)

where fπ = 130.4 MeV is the pion decay constant [29]. The
amplitude squared for the process νμ + μ− → π− is obtained
by summing over spin states of the muon in the initial state and
is given by

|A|2ν̄μ
= 2(GF cos θC fπ )

2m2
μ

(
E2

π − p2π − m2
μ

)
, (12)

where Eπ and pπ are the pion energy and momentum, respec-
tively, and mμ is the mass of the muon. In the vacuum, energy
and momentum conservation forbids the process νμ + π− →
μ−. However, in dense matter the modification of the pion
dispersion relation, which we discuss in detail below, allows
for this process when the pion momenta and energy satisfy
E2

π − p2π < m2
μ. In this case, the amplitude squared is obtained

by summing over spin states of the muon in the final state and
is given by

|A|2νμ
= 2(GF cos θC fπ )

2m2
μ

[
m2

μ − (
E2

π − p2π
)]

. (13)

We note that the amplitude squared is proportional to the
square of the lepton mass—a well-known fact that suppresses
the decay of pions to electrons. It is for this reason that we
focus on interactions involving only muon neutrinos in this
work.

Using Fermi’s golden rule, the mean-free path of ν̄μ due to
the inverse decay reaction is given by

1

λν̄μ

(
Eν̄μ

) =
∫

d3 	pμ

(2π )32Eμ

∫
d3 	pπ

(2π )32Eπ

fμ(1 + gπ )

× (2π )4δ4
(
Pμ + Pν̄μ

− Pπ

)|A|2ν̄μ
(14)

where gπ and fμ are the Bose-Einstein distribution for pions
and Fermi-Dirac distribution for muons, respectively. When
kinematically allowed, the mean-free path of νμ due to the
charged current reaction is

1

λνμ

(
Eνμ

) =
∫

d3 	pμ

(2π )32Eμ

∫
d3 	pπ

(2π )32Eπ

gπ (1 − fμ)

× (2π )4δ4
(
Pπ + Pνμ

− Pμ

)|A|2νμ
. (15)

The integrals appearing in Eqs. (14) and (15) can be further
simplified and we find that

1

λν̄μ

(
Eν̄μ

) = 1

16πE2
ν

∫ ph

pl

d pπ

pπ

Eπ

fμ(1 + gπ )|A|2ν̄μ
, (16)

1

λνμ

(
Eνμ

) = 1

16πE2
ν

∫ ph

pl

d pπ

pπ

Eπ

gπ (1 − fμ)|A|2νμ
. (17)

The limits of the pion momentum integral, pl and ph, arise
due to energy conservation. For the νμ + μ− → π− reaction,
the limits are determined to ensure that

−1 � Eπ

pπ

− E2
π − p2π − m2

μ

2pπEν

� 1, (18)
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and for the νμ + π− → μ− reaction, they are obtained to
ensure that

−1 � Eπ

pπ

+ E2
π − p2π − m2

μ

2pπEν

� 1. (19)

When Eπ > pπ , Eq. (18) can be satisfied when E2
π − p2π �

m2
μ and Eq. (19) can be satisfied when E2

π − p2π � m2
μ. For

example, at pπ = 125 MeV, which is near the typical momen-
tum for a pion, at nuclear density and T = 30 MeV the inverse
pion-decay reaction is allowed for neutrinos with energies
approximately between 8 and 45 MeV. At high momenta,
pπ � 200 MeV, we find that our dispersion relation allows
for Eπ < pπ and in this case both reactions are allowed and
the range of allowed neutrino energies is only bounded from
below. For the inverse pion-decay reaction this lower bound
is at very high neutrino energies, but for the νμ + π− → μ−
reaction the lower bound is around 20–40 MeV in matter at
nuclear density and T = 30 MeV.

To calculate the neutrino mean-free paths we need the pion
dispersion relation to determine the relationship between the
pion energy and momentum in matter. In general, this is given
by

Eπ− (p) =
√
p2 + m2

π + �π− (p), (20)

where �π− (p) is the self-energy. We propose a simple model
to calculate the real part of �π− (p) using the one-loop approx-
imation. The model is constructed to be consistent with the
predictions of the virial expansion, and the pion-self-energy is
given by

�π− (p) =
∫

d3k

(2π )3
∑
N=n,p

fN (EN (k))V
ps
Nπ− (pcm), (21)

where the pion-nucleon interaction is directly proportional to
the phase shifts

V (ps)
Nπ− (pcm) = −α

∑
I,l,ν

(2l + 1)
2πδIl,ν

m̄pcm
. (22)

Here,

pcm = m̄

√
p2

m2
π

+ k2

m2
N

− 2pk

mπmN
cos θ

is the center-of-mass momentum, and m̄ = mπmN/(mN +
mπ ) is the reduced mass. The sum is over allowed values
of the isospin I , angular-momentum values l , and nucleon
spin-projections ν = +,−. Note that the pseudopotential is
proportional to δIl,ν and differs from the other choices such as
the T matrix, which is proportional to sin δIl,ν , or the R matrix,
which is proportional to tan δIl,ν . This choice for the pseudopo-
tential is motivated by the observation that the second virial
coefficient is also proportional to δIl,ν . In addition, Fumi’s
theorem—a well-known result in condensed-matter physics—
shows that the calculation of the ground-state energy shift due
to interactions between particles in a gas and an impurity can
be obtained if the pseudopotential of the form in Eq. (22) is
used as an effective interaction [30].

FIG. 6. Pion self-energy predicted by our model at a few repre-
sentative temperatures and baryon densities.

A fudge factor α is introduced to ensure that the number
density we obtain by using this dispersion relation matches the
result in Eq. (6) obtained in the virial expansion. We find that
the π− interaction with neutrons dominates the self-energy
and in what follows we neglect the contribution due to π−
proton interactions. The self-energy obtained in this way is
shown in Fig. 6. We employ the experimentally measured
phase shifts up to pcm ≈ 350 MeV and assume that it remains
constant at higher momentum. The values for the fudge factor
α used to ensure consistency with the virial result are given
in Table II. It is interesting to note that the fudge factor
α � 1/(2π ) but we do not have an explanation for why this
is the case.

Although our model for �π− (p) is admittedly very crude,
the modest variation of α over a broad range of densities and
temperatures is reassuring. It suggests that our ansatz for the
pseudopotential provides a fair description of the momentum
dependence of pion-nucleon interactions (we have explicitly
checked that other choices such as the T matrix, which is
proportional to sin (δIl,ν ), would produce a larger variation of α
with temperature and density). We have examined the general
behavior of the pion dispersion relation we obtain and find
that it is physically plausible. The substantial reduction in the
pion energy seen in Fig. 6 at pπ � 300 MeV is due to the
strong p-wave attractive interaction, and the small increase at
p = 0 arises due to weak and repulsive s-wave interaction.
The group velocity of the pions is also roughly consistent
with general expectations. It is small at low momentum

TABLE II. Values of the fudge factor α needed to obtain
consistency.

α T = 30 MeV T = 60 MeV

nB = 0.5n0 0.183 0.216
nB = 1.0n0 0.139 0.171
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FIG. 7. Antineutrino inverse mean-free paths due to the inverse
pion decay reaction, with and without Nπ− interactions included, are
compared with the neutral current reactions involving nucleons.

and approaches c (the speed of light) at large momenta.
At intermediate values �350 MeV we find that the model
predicts a group velocity that can exceed c by a few percent—
a mild deficiency given the approximations of our model.
First, the pseudopotential in Eq. (22) was employed in the
Born approximation to calculate �π− and it provided a direct
relationship between the self-energy and the phase shifts in
Eq. (21). This relationship is exact only in the limit when one
can neglect correlations between nucleons and nucleon recoils
[30]. Second, our approximation that the phase shift remains
constant for pcm � 350 MeV has an effect on the behavior of
the pion self-energy at these large momenta. Third, we ne-
glected the imaginary part of the pion self-energy in the mat-
ter. The imaginary part arises due to two-loop contributions
involving two nucleons in the medium. For these reasons,
we view our model as the first step towards more realistic
calculations.

The inverse mean-free path due to the reaction νμ + μ− →
π− in matter containing pions at nB = 0.5n0 and T = 30MeV
is shown in Fig. 7. The dashed-green curve is calculated by us-
ing the vacuum dispersion relation for the pions. Since pions
only appear in the final state, this curve depends only weakly
on the model for pion-nucleon interactions. The solid-red
curve is obtained by using the dispersion relation in Eq. (20),
and the self-energy depicted in Fig. 6. Here we see the strong
influence of the in-medium dispersion relation, especially at
large neutrino energy. The reduction in the pion energy due
to its large and attractive p-wave interaction with nucleons
implies that a large-momentum pion in the final state is unable
to satisfy energy and momentum conservation in the medium.
The rapid decrease in the inverse mean-free path depicted by
the solid-red curve reflects these severe kinematic constraints.
At lower neutrino energy, the in-medium dispersion relation
leads to a significant reduction of the νμ mean-free path.
It is remarkable that at these low energies neutrino pro-

FIG. 8. Neutrino inverse mean-free path due to the inverse muon
decay reaction is compared with the mean-free path due to neutral
and charged current reactions involving nucleons.

cesses involving a sparse population of muons and pions are
significantly more important than processes involving nu-
cleons and electrons. Neutral current reactions νμ + X →
νμ + X where X = n, p, e− have been studied extensively
in earlier work [31,32] and we use the open-source com-
puter codes from the neutrino opacity library, NUOPAC [33],
to calculate the neutrino mean-free paths. The contribu-
tions from the reactions νμ + n → νμ + n, and νμ + p →
νμ + p are shown as the blue dot-dashed and orange dot-
ted curves in Fig. 7. Neutral reactions involving electrons,
not shown in the figure, are smaller than that due to the
nucleons.

The mean-free path of muon neutrinos in matter con-
taining pions at nB = 0.5n0 and T = 30 MeV is shown in
Fig. 8. This process, which is forbidden in the vacuum, is
sensitive to the pion dispersion relation and their abundance.
Again, the result, depicted by the solid-red curve, shows
some remarkable features. At low energy, the process involv-
ing pions is dominant. It remains more important than the
charged current reactions involving nucleons shown as the
dashed-green curve even at higher energies. Neutral current
scattering off nucleons, shown by the blue dot-dashed and
orange dotted curves, continues to be the dominant reaction
for thermal neutrinos under these specific conditions. The
sharp feature in the solid-red curve at Eν � 30 MeV is due
to the nonmonotonic behavior of the kinematic constraint
in Eq. (19).

C. Weak equilibration and bulk viscosity

Bulk viscosity offers a mechanism to damp density oscil-
lations in matter and plays a role in neutron-star dynamics
[34]. For example, dissipative effects in neutron-star mergers
influence the lifetime of the hot dense hypermassive neutron
star and the postmerger gravitational-wave emission [35].
Bulk viscosity arises due to nonequilibrium reactions that
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convert chemical energy into thermal energy. This conversion
happens because the equilibrium chemical composition of
matter changes with density; therefore, the density perturba-
tions induce inelastic reactions.

In neutron stars, where relevant dynamical timescales are
of the order of milliseconds, weak reactions play the dominant
role in determining the bulk viscosity [36]. In dense nuclear
matter, the reaction e− + p ↔ n + νe, often referred to as the
URCA reactions in astrophysics, and the modified URCA
reaction e− + p+ n ↔ n + n + νe change the proton fraction
when perturbed and are generally considered to be the main
source of bulk viscosity. Recent work investigated the role of
these weak reactions involving nucleons in dense matter with
and without neutrino trapping at high temperatures [37,38]. At
nB = 0.5n0 and T = 30 MeV the results in Ref. [38] indicate
that the beta-equilibrium relaxation time for these reactions
is about 10−7 s for the neutrino-free case, and about 10−9 s
when neutrinos are trapped. However, we expect that, under
similar conditions, reactions involving pions and nucleons
would proceed on much faster timescales due to the strong
interaction, allowing for faster equilibration of the proton
fraction.

Consider a density perturbation in which the final equi-
librium state contains a larger neutron fraction. In the ab-
sence of reactions involving pions, electron capture reactions
e− + p → n + νe and e− + p+ n → n + n + νe generate the
needed neutrons. When these reactions are out of equilibrium
they generate heat and dissipation. In the presence of pions
and muons there are additional reaction channels that can play
a role. These include

π− + p+ n ↔ n + n, (23)

μ− ↔ π− + νμ, (24)

μ− ↔ e− + ν̄e + νμ, (25)

π− ↔ μ− + ν̄μ. (26)

The nonleptonic reactions mediated by the strong interaction
proceed on a timescale that is much faster than the weak
reactions involving leptons. Consequently, the timescale for
equilibration is set by the weak reactions involving pions.
These observations suggest that the role of weak interactions
involving nucleons will be a subdominant process when pions
are present. We note that, although the modification to the pion
dispersion relation allows for the process π− + p → n, which
is forbidden in the vacuum, in practice we find that these
reactions can occur only when the nucleon momentum is very
large. At T = 30 MeV and nB = n0 the minimum nucleon
momentum needed for this process is �730 MeV. Since this is
much larger than the momentum of thermal nucleons, pnuc �√
3MT � 290 MeV we expect that its contribution will be

negligible.

IV. CONCLUSION

Our study shows that negatively charged pions are an
important degree of freedom in hot dense matter encoun-
tered in astrophysics. The virial expansion provides a model-
independent approach to include pion-nucleon interactions

when the fugacities are small and provides strong evidence
for the enhancement of the pion number density due to pion-
nucleon interactions. At densities and temperatures relevant
for the study of neutron-star mergers and core-collapse su-
pernovae, the proton and pion fugacities are small, but the
neutron fugacity can be large. To describe such matter we
proposed a simple hybrid model that provides qualitative
insights about the role of pions in hot neutron-rich matter.
The attractive p-wave interaction between nucleons and pions
was found to significantly increase the density of pions and
the proton fraction in the charge-neutral matter in β equi-
librium. At a baryon density nB � n0, pion contributions to
the thermodynamics become relevant when T > 25 MeV. At
T = 60 MeV, nB � n0, we find that pions lower the pressure
by about 10%, and at T = 100 MeV they lower the pressure
by about 30%. A naive extrapolation to nB = 2n0, suggests
that pions could have dramatic effects on the EOS, and the
transport properties even at low temperature. However, further
work is needed to study matter at these higher densities where
the virial approximation fails, and pion condensation becomes
a possibility.

Our most significant finding is that even a relatively small
number fraction of pions alters the neutrino mean-free paths
and the reaction pathways for equilibration of the proton and
lepton fractions. The presence of pions and muons allows
for additional reactions such as νμ + π− → μ− and ν̄μ +
μ− → π−. These reactions make the dominant contribution
to the mean-free path of low-energy muon neutrinos. Charged
current interactions are efficient at transferring energy; thus,
the shorter mean-free paths of the muon neutrinos should
impact energy transport in protoneutron stars and neutron-star
mergers.

We believe that our results establish the need to include
pions as explicit degrees of freedom in the calculations of the
EOS and transport properties of hot dense matter encountered
in astrophysics. However, the approximations made in this
study, and discussed extensively in previous sections, war-
rant a critical assessment. In particular, the pion-dispersion
relation in the dense medium should be calculated in a mi-
croscopic theory in which pion-nucleon and nucleon-nucleon
interactions are treated consistently. Extending calculations
of hot dense matter based on chiral perturbation theory [39]
to include dynamical pions will be ideally suited for this
purpose.

Finally, we remark on the need to revisit the possibility
of s-wave π− condensation in neutron-star matter. Although
we were deliberate in restricting our analysis to high tem-
perature and relatively low density in this study to ensure
that we had a model-independent basis for our claims, our
calculations suggest that pion-nucleon interactions are weak
for low-momentum pions. From Fig. 6 we can deduce that the
energy-shift of a zero-momentum π− in neutron-rich matter
at nuclear density is negligible. We believe that it is likely
to remain so even at higher density and lower temperature.
This would imply that threshold for s-wave π− condensa-
tion would be μe � m−

π , and that s-wave π− condensation
will occur at nB � 2n0. A detailed study of π− condensa-
tion and its implications for neutron stars will be presented
elsewhere.
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